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Abstract—Massive multiple-input multiple-output (MIMO) has
gained a tremendous amount of attention as a key enabler
of fifth-generation cellular systems. The majority of the vast
literature on massive MIMO is based on fully digital processing,
where each antenna element in the massive array is equipped
with an up/down-conversion chain. Unlike previous works, we
present a suite of greedy algorithms using pureanalog processing
which approach the performance of uplink digital zero-forcing
(ZF) combining. Based on successive nulling and amplification
processing (SNAP), the proposed techniques are evaluated in
a multi-user context over a range of heterogeneous channel
models. Rigorous comparisons are then made to other benchmark
analog techniques, digital ZF and an upper bound on analog
processing. The most promising approach is shown to have
very low-complexity and robustness against a variety of channel
conditions, while providing useful performance gains.

I. I NTRODUCTION

It is well understood by now that fifth-generation (5G) cellu-
lar systems should provide an order-of-magnitude increasein
the average spectral efficiency (1 Gbps and above) relative to
existing fourth-generation systems [1]. Phenomenal progress
has been made in academia and industry to achieve the afore-
mentioned targets, using concepts such as massive multiple-
input multiple-output (MIMO) [2]. On the standardization
front, the third generation partnership project have converged
on the first global standard for 5G cellular, known as new-radio
(NR) release 15 [3]. 5G-NR will operate ontwo frequency
bands via the principle ofdual connectivity. Namely, FR1,
which contains bands below 6 GHz, and FR2 which con-
tains higher bands approaching millimeter-wave (mmWave)
frequencies. While it is desirable to have massive MIMO in
the FR1 bands to provide uniform wide-area coverage, its
inclusion isessentialfor FR2 bands to provide large array gain
[4]. The potential of massive MIMO is fully exploited when
digital processing is employed at the base station (BS), where
each antenna element has a dedicated up/down-conversion
radio-frequency (RF) chain. This facilitates coherent trans-
mission and combining, such that the desired signal power
is maximized and multi-user interference is nulled [5].

Nonetheless, fully digital processing is extremely difficult
to realize in FR2 bands due to the exponentially increasing
power consumption of mixed-signal components and RF in-
terconnect complexity [4]. To this end, the use ofanalog-
digital (a.k.a.hybrid) processing techniques have gained much
attention to reduce the number of RF chains [6]–[8]. Hybrid
techniques pioneered in [7] were later strongly motivated by

the results in [8] showing that digital processing performance
can be achieved with hybrid architectures if the number of
up/down-conversion RF chains isat least twicethe number
of data streams. This popular approach is now the subject
of numerous overviews in the related literature (see e.g.,
[4], [6] and references therein). In parallel with the work
on hybrid processing schemes, there remains high interest in
purely analog, phase-only processing (POP) techniques [9]–
[13]. Investigations intouplink (UL) processing [9], [11], [12]
anddownlinkprocessing [10]–[12] over both simpleRayleigh
fading [9] and mmWave channels[9]–[12] have already been
carried out. Due to the presence of only a single RF-chain, one
may expect the average spectral efficiency of massive MIMO
systems with pure analog processing to bemuch lessthan
the digital counterpart. Nevertheless, the massive reduction in
implementation complexity often makes analog processing a
suitable choice. In fact, almost all of the currentcommercial
5G-NR street-macro and micro-cellular solutions within the
FR2 bands are based on analog processing [14].To this end,
a major challenge is to overcome the loss in achievable
performance, while retaining the low-complexity structure of
analog processors. We are further motivated to consider POP
techniques by recent results in [11] and [9]. In [11] it is
shown that POP can sometimes result in a useful performance-
complexity trade-off. Also, in the high performance region
(small numbers of users at moderate to high SNR) it has been
shown that purely analog processing can outperform some
hybrid schemes [9].

Hence, in this paper, we consider the design of novel
POP methods that provide further improvements in the high
performance regime. In addition to the use of purely ana-
log techniques, the designed algorithms, based onsuccessive
nulling and amplification processing(SNAP), are deliberately
sequentialandgreedyin nature to furtherreducecomplexity.
We focus on the UL of a multi-user massive MIMO system
and compare our novel schemes with typical analog and
digital techniques, as well as a general upper bound on analog
processing. As is typical in such studies, we also consider
the performance loss relative to digital zero-forcing (ZF).
Specifically, our contributions are as follows:

• A range of novel POP schemes, SNAP, are designed and
presented with varying degrees of complexity, leading to
the promisingreverse SNAPmethod.

• The SNAP methods are shown tooutperform typical



analog alternatives and achieve large fractions of the gains
offered by optimal analog processing. To the best of our
knowledge, this has been missing from the literature.

• The reverse SNAP algorithm is shown to be very low
complexity androbust to a wide range of heterogeneous
channel conditions, while providing useful gains in the
high performance regime of massive MIMO systems.

II. SYSTEM MODEL

We consider an UL massive MIMO system whereK single-
antenna users are served by a BS equipped withN antennas
(N ≫ K). TheN × 1 received signal at the BS is given by

r = Hs+ n, (1)

where s = (s1, s2, . . . , sK)T is the K × 1 vector of trans-
mitted signals,H is the N × K composite channel matrix
and n = (n1, n2, . . . , nN )T is the N × 1 additive white
Gaussian noise vector. Without loss of generality, we assume
E [|si|

2] = 1, E [|ni|
2] = 1 andE [|hij |

2] = βj is the link gain
of userj. Note thathij denotes the(i, j)-th entry ofH. We
assume perfect channel knowledge at the BS. At first sight, this
assumption may seem impractical. However, there are three
reasons for making it: 1) The primary focus of the paper is
on proposing analog processing techniques offering superior
performance relative to conventional schemes, while retaining
low-complexity. Here, in order to fundamentally understand
the performance of the proposed method, perfect channel state
information is required. 2) Obtaining a high quality estimate
of the channel is a reasonable assumption in low mobility
scenarios, where a large fraction of the NR subframe can
be used for uplink training. 3) The results obtained from
subsequent analysis can be regarded as a useful upper bound
on what may be achieved in practice with imperfect channel
estimates.

We assume the use of two heterogeneous propagation
channel models in the paper. Namely,semi-correlated Ricean
fading and aray-basedmodel. The correlated Ricean model
is defined in the following: LetH = [h1,h2, . . . ,hK ], where
hj is the channel vector for userj. Each user has its own
K-factor,Kj , and correlation matrix,Rj , so that [15]

hj =

√
Kj

Kj + 1
a(φj) +

√
1

1 +Kj
R

1/2
j uj . (2)

Note thata(φj) is the dominant line-of-sight (LoS) component
corresponding to the steering vector,a(·), of the BS array and
an azimuth AoA for the LoS path given byφj . Assuming the
use of a uniform linear array (ULA) [15]

a(φj) = [1 ej2πd(sinφj), . . . , ej2π(N−1)d sin(φj)]T . (3)

Note that in (2),Rj is the correlation matrix anduj ∼
CN (0, IN ). We consider a uniformly distributed placement
of scatterers. To this end, we consider a one-ring spatial
correlation model forRj with central angleφj and an azimuth
angle spread of∆or

j for userj. Exact details on the one-ring
model will be presented later in the paper. In addition to the
semi-correlated Ricean fading model, we also consider the ray-

based channel description, which is given in [16], and is a
three-dimensional (3D) model based onC clusters of scatterers
with S sub-paths per-cluster. In such a model, the propagation
channel vector for userj is defined as

hj =

C∑

c=1

S∑

s=1

γj
cs a (φj

cs, θ
j
cs), (4)

where γj
cs are the coefficients for subpaths in cluster c,

φj
cs is the corresponding azimuth AoA andθjcs is the ele-

vation AoA. Here, we assume avertically orientateduniform
rectangular array (V-URA), wherea(·) is the corresponding
steering vector. The ray coefficients are defined byγj

cs =
(βj

cs)
1/2 exp (jΦj

cs) whereβj
cs is the gain of the ray andΦj

cs

is the phase offset modelled asΦj
cs ∼ U [0, 2π]. Due to the

clustered nature of the channel, the AoAs also take a clustered
form in φj

cs = φj
c + ∆j

cs and θjcs = θjc + δjcs. Here φj
c, θjc

are the central cluster angles and∆j
cs, δjcs are the subpath

offsets, respectively. Further details of the model parameters
and distributions are given later on in the paper.

At the BS, linear processing is performed to detect the
transmitted data ins1, s2, . . . , sK , using the combinerwj for
userj. Hence, the output of the combiner for userj is

s̃j = w
H
j r = w

H
j hjsj +

∑K

i=1
i6=j

w
H
j hi si +w

H
j n, (5)

and the resulting signal-to-interference-plus-noise ratio (SINR)
for userj can be written as

SINRj =
|wH

j hj |
2

∑K
i=1
i6=j

|wH
j hi|2 +wH

j wj

. (6)

In this paper, we consider POP methods which attempt to
achieve SINRs which are close to those given by digital ZF
combining. Hence, our target combiner is given byW

ZF =
[wZF

1 , . . . ,wZF
K ], whereW

ZF = H(HH
H)−1, following the

classical structure of the ZF combiner [16].

III. PROCESSINGMETHODS AND BOUNDS

In this section, we definethreeSNAP algorithms, as well as
digital ZF and a simple upper bound on POP. Some of the ideas
are motivated by thetwo-stagestructure of ZF combiner where
the received signal is first multiplied byHH , i.e., performing
maximum-ratio combining (MRC), followed by interference
cancellation, achieved by(HH

H)−1. The proposed methods
are described as follows:

A. Analog MRC

The simplest form of phase only processing is analog MRC
[17], or equal-gain combining, where the processing weight
vectors use thephase informationin the channels. Here,
w

A
j = h̃j , where the tilde notation indicates keeping the phase

component only. Hence,̃M = (m̃ij), wherem̃ij = mij/|mij |
for any matrix, vector or scalar,M = (mij).

B. Analog ZF

Here, we simply take the phase informationin the ZF
combiner so that the combiner becomesW

A-ZF = W̃ZF and
w

A-ZF
j is the j-th column ofWA-ZF.



C. SNAP: The Forward Process

This algorithm builds on the interpretation of digital ZF as
a signal boosting processfollowed by interference reduction.
A greedy algorithm is proposed as a reduced complexity
approach to implement this process as described below. In this
exposition, userj is thedesireduser. For ease of notation, in
this section we refer to the elements ofwj asw1, w2, . . . , wN .

Stage 1: Ordering. In stage 1, the antennas are ordered in
decreasing order of importance from the perspective of signal
boosting.We propose either signal power or per-antenna signal
to interference ratio (SIR) as ordering metrics. The signal
power at antennak is defined by|hkj |

2, and the SIR at antenna
k is given by |hkj |2/

∑
i6=j |hki|2. Using these methods, the

antennas are ordered from highest to lowest and for ease of
notation, we assume thatH, is now ordered in this way.

Stage 2: Signal boosting.Here, analog MRC is performed
for the firstT antennas whereT is a threshold which seperates
the second and third stages. Hence, the antenna weights are
given bywk = h̃kj for k = 1, 2, . . . , T . To this end, stage 2
maximisesthe signal power for theT strongestantennas. The
choice ofT is discussed later in the text.

Stage 3: Interference reduction.During stage 2, the sig-
nal power has been increased, but no attempt has been made
to mitigate interference. Since the interferers will usually have
quite different channels, there is no reason to expect that stage
2 will have a deliberate interference inflation effect. However,
the interference is likely to grow in a random fashion during
stage 2. In this stage, a sequential approach is taken and the
remainingN − T antenna weights are chosen tocancel out
the largest interference terms.

After stage 1, the weightsw1, w2, . . . , wT are defined and
the output from these antennas delivers the running summation
of the signal terms (in columnj) as

RSj =
∑T

k=1
w∗

khkj . (7)

These weights also create running sums of interference terms
(in columnsi 6= j) given by

RSi =
∑T

k=1
w∗

khki. (8)

From these running sums we create the matrixHT , known
as aresidual matrix as it contains the running sums and the
remainder of theH matrix afterT weights have been decided.
HT is defined as

HT =




RS1 RS2 . . . RSK
hT+1,1 hT+1,2 . . . hT+1,K

...
...

. . .
hN,1 hN,2 . . . hN,K


 , (9)

and the subscriptT denotes that this is the residual matrix after
T antenna weights have been allocated. Next, the largest mag-
nitude interference term inHT is found. This can be a running
summation value, RSi for i 6= j, as this is the interference term
created by previous antenna weights. Alternatively, the highest
interference term could be an individual channel value, some
hri for i 6= j. The highest interference term is then partially

cancelled by a phase rotation as described below for the three
possible scenarios.

Scenario 1.If RSi is the largest interference term then we
also find the next largest interference term in columni, some
hri. The weight for rowr, wr, is then chosen to cancel with
the running sum for columni as below:

wr = −
hri

|hri|

RS∗i
|RSi|

= −h̃riR̃S
∗

i . (10)

The running sums are then updated such that1

RSi = RSi + w∗
rhri, ∀i 6= j, (11)

and a new residual matrixHT+1 is made such that

HT+1 =




RS1 RS2 . . . RSK
hT+1,1 hT+1,2 . . . hT+1,K

...
...

.. .
hr−1,1 hr−1,2 . . . hr−1,K

hr+1,1 hr+1,2 . . . hr+1,K

...
...

.. .
hN,1 hN,2 . . . hN,K




. (12)

Note that r may be equal to any value fromT + 1 to
N inclusive asHT is not ordered in descending order for
interference terms.

Scenario 2.If hri is the largest interference term and RSi

is the second largest term in columni then we proceed as
in scenario 1. Again, rowr is rotated so that the interference
term partially cancels with the running sum for that column.
Hence, the weight,wr, is chosen by (10), the running sums
updated using (11) and the residual matrix updated using (12).

Scenario 3.If hri is the largest interference term in the
residual matrix andhsi is the second largest interference term
in column i then rowsr and s are both rotated to partially
cancel both each other and the running sum for that column.
Hence, the weight for rowr is chosen as in scenario 1 as:

wr = −
hri

|hri|

RS∗i
|RSi|

= −h̃riR̃S
∗

i . (13)

This partially cancels the running sum. The weight for rows,
ws, is chosen to cancel the rotated version ofhri such that

ws = −
hsi

|hsi|

hriw
∗
r

|hriw∗
r |

= −h̃rih̃riw̃
∗
r . (14)

The running sums are then updated such that

RSi = RSi + w∗
rhri + w∗

shsi ∀i 6= j, (15)

1Note thatwr is chosen to reduce RSi so there is no guarantee that RSj

for j 6= i will be reduced.



and a new residual matrixHT+2 is made such that

HT+2 =




RS1 RS2 . . . RSK
hT+1,1 hT+1,2 . . . hT+1,K

...
...

. ..
hr−1,1 hr−1,2 . . . hr−1,K

hr+1,1 hr+1,2 . . . hr+1,K

...
...

. ..
hs−1,1 hs−1,2 . . . hs−1,K

hs+1,1 hs+1,2 . . . hs+1,K

...
...

. ..
hN,1 hN,2 . . . hN,K




. (16)

Stage 4: Iteration. The description above begins withT
selected weights and a residual matrix of dimensionN −T +
1 × K denotedHT . However, the algorithm holds for any
stage of the process where a residual matrix,Ht for t ≤ N
is updated to produceHt+1 in scenarios 1 and 2 orHt+2

in scenario 3. Hence, stage 3 is repeated untilN weights are
selected and the residual matrix has only one row of running
sums remaining,HN . This completes the weight calculation.

The SNAP algorithm requires the value ofT , which is
essentially the breakpoint between how many antennas to use
for boosting the signal, and how many to use for interference
cancellation. Two methods are explored here: a fixed value
optimized to maximize the mean SINR according to the statis-
tics of the channel (fixed) and the SINR optimal breakpoint
achieved by an exhaustive search ofT values in{1, 2, . . . N}.

We show in Sec. IV that the optimal choice ofT delivers
useful gains over the fixed value. Hence, to avoid the com-
plexity of the exhaustive search, it is desirable to developa
sequential approach to settingT , which gives performance
close to the optimal choice. SelectingT this way with the
forward process is difficult, as at any stage of the iterationin
stage 4, the future antenna weights areunknownand hence the
potential for future nulling is hard to compute without running
the full algorithm. Thus, we consider the reverse process,
which is more amenable to an adaptive choice ofT .

D. SNAP: The Reverse Process

It is trivial to set allN weights using analog MRC. This
performs full signal boosting. Then, we start at the bottom of
the orderedH matrix and work upwards, nulling interference
atN−T antennas. Here, it is easier to find a reasonable value
of T in a sequential manner as the future weights are already
set. The algorithm is below.

Stage 1: Ordering. Ordering is done as in stage 1 for the
forward process.

Stage 2: Signal boosting.As for the forward process, ana-
log MRC is used. Initial values of all weights are set in this
way, so thatwk = h̃kj for k = 1, 2, . . . , N . The SINR of this
weight selection is stored in SINR1. Also, the running sums of
interference values corresponding to the firstN−1 weights are
stored in the vector,RS = (RS1, . . .RSj−1,RSj+1, . . .RSK)

where RSi =
∑N−1

k=1 w∗
khki.

1: procedure REVERSE-SNAP(H)
2: k = 0
3: while stopping rule not satisfieddo
4: k = k + 1
5: c = argmax

i6=j
RSi ⊲ Find column with largest RS

6: wN−k+1 = −h̃N−k+1,cR̃S
∗

c ⊲ cancel columnc
7: RS = RS+ w∗

N−k+1HN−k+1,: − w∗
N−kHN−k,:

8: Compute SINRk+1 using (6) and updated weights
9: Store weights if SINRk+1 is the current maximum

10: Compute stopping rule
11: end while
12: return w1, w2, . . . wN

13: end procedure

Fig. 1. SNAP algorithm using the reverse process

Stage 3: Interference reduction.The idea is to rotate rows
of the H matrix to partially cancel the largest running sums
of interference as in scenario 1 of the forward process. This
process continues until some SINR condition is satisfied (the
stopping rule). The iteration is described in Fig. 1 whereHr,:

represents rowr of H.
The stopping rule. The stopping rule can be as simple

as k = N which allows the iteration to runN times and
guarantees the maximum SINR from the reverse process.
However, a large number of these iterations can be avoided
if the iteration is stopped after a local maxima in the SINR
is reached. We adopt the simple rule where the process stops
after 5 successive SINRs have been below the previous peak
value. Hence, the algorithm stops afterk∗ iterations where

k∗ = min{k + 5|SINRk > SNRk+i, i = 1, . . . , 5}, (17)

returning the weights which give SINRk.
Computational complexity. The reverse nulling procedure

is low complexity as all operations, except for the sort in
step 5, can be achieved via simple updates. Ignoring addi-
tion, subtraction and evaluating the amplitude and phase of
a complex number, the computations required are itemized
below. Step 5 requires a sort ofK − 1 numbers. Steps 6 and
7 require 3 complex multiplications. Step 8 requiresK + 1
complex multiplications,K real multiplications and one real
division if the SINR calculation is performed recursively.For
example, at stage 6 only a single weight,wN−k+1, is being
updated. Hence, in order to update thewH

j hi terms in the
numerator and denominator of (6) it suffices to remove the
old term,wold

N−k+1hN−k+1,i, and replace it with the new term,
wnew

N−k+1hN−k+1,i. This involves one complex multiplication.
K updates of this form are required for thewH

j hi terms and
one for thewH

j wj term. Finally,K squares and one division
are required and (6) is obtained.

E. POP Bound

Analog MRC is the optimal POP for boosting the desired
signal power. If it is assumed that analog MRC also completely
removes the interference then a simple upper bound on POP



follows. Hence, any POP method has an SINR less than or
equal to SINRub

j , where

SINRub
j =

∣∣∣h̃H
j hj

∣∣∣
2 (

h̃
H
j h̃j

)−1

=
1

N

(
N∑

r=1

|hjr|

)2

, (18)

usinghj = (hj1, hj2, . . . , hjN )T and h̃
H
j h̃j = N . Note that

(18) follows simply from substitutingwA
j = h̃j into (6) and

setting the interference to zero.

IV. N UMERICAL RESULTS

Figures 2-4 compare the SINR cumulative distribution func-
tions (CDFs) for the processing methods presented in Sec. III
for different types of channel models, namely iid Rayleigh,
correlated Ricean and ray-based models, respectively. In all
cases the system is parameterized by selecting the link gains
or ray coefficients so that the digital ZF benchmark achieves
a median SNR of20 dB. The figures show the three types
of forward SNAP processing discussed in Sec. III-C. These
methods are identified by the type of breakpoint and ordering
used. Specifically, the techniques are forward SNAP with a
fixed breakpoint value with signal power and SIR ordering
(denoted byForward SNAP (O1-fixed)and Forward SNAP
(O2-fixed), respectively), and with an optimal breakpoint value
(denoted byForward SNAP (optimal)). The figures also plot
the SINR CDFs of the reverse SNAP algorithm of Sec. III-D.
These are compared to standard analog MRC and analog ZF,
described in Secs. III-A and III-B and to the phase only bound
(Sec. III-E). For simplicity, all users are assumed to have equal
receive power. In all figures, we assumeK = 4 users are
present andN = 100. Fig. 2 shows a performance comparison
for an iid Rayleigh fading channel. Considering the median
values, we see that all of the proposed SNAP algorithms
attain a 5 dB improvement over analog MRC, while a 6 dB
improvement is a (usually non-achievable) theoretical upper
bound. Out of the four SNAP variants, the optimum threshold
naturally achieves the best forward SNAP performance. It
is promising that the reverse SNAP approach is bracketed
by forward SNAP (fixed) at low SNR and forward SNAP
(optimal) for high SINR. Computationally, reverse SNAP is
trivial so that it’s effectiveness relative to forward SNAPand
the upper bound make it an attractive implementation. We note
that the upper bound may be loose as analog MRC does not
null the interference, as is clearly shown in Fig. 2. Hence,
the proximity of the SNAP techniques to the upper bound
is suggestive of high performance. The small improvements
offered by the forward SNAP (optimal) approach are due to
the greater flexibility of the forward approach which is able
to cancel individual interferers with each other as well as with
running sums. Although this can also be implemented in the
reverse scheme, the idea of the reverse SNAP method is to
achieve low-complexity, hence this is not been considered.

In Fig. 3 a correlated Ricean channel is considered. The
K-factor selected isKj = 0 dB ∀j such that half the channel
power is LoS and half is scattered. The correlation matrices
are chosen independently for each user using a one-ring model
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Fig. 2. SNAP performance comparison for i.i.d. Rayleigh fading.
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Fig. 3. SNAP performance comparison for correlated Ricean fading.

with a central angleφj ∼ U [−30°, 30°] and angle spread
∆or

j = 30°. Similar trends are observed as for iid Rayleigh,
with a greater gap between the analog techniques and digital
ZF. The SNAP techniques are spread out further behind the
digital ZF as intuitively the SNAP methodology is enhanced
by diversity, so that channels can be rotated to cancel out
dominant interference terms. In a strong LoS environment, all
channel coefficients have similar magnitudes, so there are no
dominant interferers and this makes the nulling process more
difficult. Nevertheless, the SNAP techniques are achieving
over 80% of the gains offered by the upper bound over analog
MRC and up to 50% of the gains offered by the upper bound
over analog ZF. Fig. 4 shows the equivalent results for a
ray-based channel (adopting the model in [16]). We assume
a 10 × 10 V-URA with half-wavelength spacing along each
axis. We considerC = 20 clusters, each withS = 20
subrays. In the azimuth domain, the central cluster angles
satisfy φj

c ∼ N (0, (20°)2) with Laplacian distributed subray
offsets,∆j

cs ∼ L(0, (5°)2). In the elevation domain, the central
cluster angles,θjc ∼ L(0, (5°)2) with offsetsδjcs ∼ L(0, (2°)2).
The angle spreads used are in the range suggested by several
measurement campaigns, eg. [18]. As expected from a ray-
based model with a finite number of paths, the results are more
similar to the correlated Ricean channel than the iid Rayleigh.
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Fig. 4. SNAP performance comparison for a ray-based channel model and a
vertically oriented uniform rectangular array.

The SNAP improvements over analog MRC and analog ZF for
a V-URA are useful as recent work has shown that the V-URA
is more prone to performance degradation with typical antenna
spacing compared to other typical antenna topologies. Note
that for all channels, the loss of reverse SNAP relative to the
optimal forward SNAP is small, suggesting that reverse SNAP
is close to optimal for these kind of sequential processing
methods based on signal boosting and interference nulling.

Finally, Fig. 5 examines the performance for different levels
of signal strength for iid Rayleigh fading. Specifically, we
show the median SINR performance gaps of the different
techniques from the digital ZF benchmark as a function of the
median digital ZF SNR used to set the link gains in the system.
We observe that while analog MRC and analog ZF result
in a steeply increasing SINR penalty with increasing SNR,
the SNAP algorithms (forward and reverse) exhibit an almost
constant, small, performance drop. Fig. 5 suggests that the
proposed algorithms are particularly well suited for moderate
to high SNR. While the results are shown for iid Rayleigh
fading, similar trends are observed for correlated Ricean and
ray-based channel models. The key factor here is the overall
performance. When the output SINRs are over 10 dB, the
SNAP algorithms can offer good improvements. When the
output SINRs are lower, then digital ZF is slightly better.
This suggests a simple hybrid approach where either SNAP
or analog ZF is used, and the algorithm switches between the
two according to the higher SINR.

V. CONCLUSION

For medium-to-high SINRs, the purely analog SNAP tech-
niques have been shown to offer useful performance im-
provements over the benchmark analog processing schemes,
analog MRC and analog ZF. Furthermore, the results are close
(within 1-2 dB for the simulated scenarios) to an upper bound
on analog processing which is likely to be unachievable. In
particular, the reverse SNAP method offers these performance
gains with very low complexity. A comparison of reverse
SNAP with several variants of forward SNAP suggests that
reverse SNAP is close to optimal for similar analog techniques
based on successive signal boosting and interference nulling.
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Fig. 5. Median performance loss of the SNAP techniques relative to digital
ZF for a ramge of output SNR values.
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